物理高中知识点归纳集锦23篇(完整文档)

物理高中知识点归纳第1篇力力是物体间的相互作用力的国际单位是牛顿,用N表示;力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点;力的示意图:用一个带箭头的线段表示力的方向;力按照性质可分为:重下面是小编为大家整理的物理高中知识点归纳集锦23篇,供大家参考。

物理高中知识点归纳集锦23篇

物理高中知识点归纳 第1篇

力是物体间的相互作用

力的国际单位是牛顿,用N表示;

力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点;

力的示意图:用一个带箭头的线段表示力的方向;

力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;

重力:由于地球对物体的吸引而使物体受到的力;

重力不是万有引力而是万有引力的一个分力;

重力的方向总是竖直向下的(垂直于水平面向下)

测量重力的仪器是弹簧秤;

重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心;

弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力;

产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力;

弹力包括:支持力、压力、推力、拉力等等;

支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向;

在弹性限度内弹力跟形变量成正比;F=Kx

摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力;

产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力;

摩擦力的方向和物体相对运动(或相对运动趋势)方向相反;

滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力;

静摩擦力的大小等于使物体发生相对运动趋势的外力;

合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力;

合力与分力的作用效果相同;

合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力;

合力大于或等于二分力之差,小于或等于二分力之和;

分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法);

矢量

矢量:既有大小又有方向的物理量(如:力、位移、速度、加速度、动量、冲量)

标量:只有大小没有方向的物力量(如:时间、速率、功、功率、路程、电流、磁通量、能量)

直线运动

物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零;

(1)在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向;

(2)在N个共点力作用下物体处于`平衡状态,则任意第N个力与(N-1)个力的合力等大反向;

(3)处于平衡状态的物体在任意两个相互垂直方向的合力为零;

机械运动

机械运动

机械运动:一物体相对其它物体的位置变化。

参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止);

质点:只考虑物体的质量、不考虑其大小、形状的物体;

(1)质点是一理想化模型;

(2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时;

如:研究地球绕太阳运动,火车从北京到上海;

时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段;

例:5点正、9点、7点30是时刻,45分钟、3小时是时间间隔;

位移:从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:描述质点运动轨迹的曲线;

(1)位移为零、路程不一定为零;路程为零,位移一定为零;

(2)只有当质点作单向直线运动时,质点的位移才等于路程;

(3)位移的国际单位是米,用m表示

位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移;

(1)匀速直线运动的位移图像是一条与横轴平行的直线;

(2)匀变速直线运动的位移图像是一条倾斜直线;

(3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大;

速度是表示质点运动快慢的物理量

(1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度;

(2)速率只表示速度的大小,是标量;

加速度:是描述物体速度变化快慢的物理量;

(1)加速度的定义式:a=vt-v0/t

(2)加速度的大小与物体速度大小无关;

(3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零;

(4)速度改变等于末速减初速。加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关;

(5)加速度是矢量,加速度的方向和速度变化方向相同;

(6)加速度的国际单位是m/s2

匀变速直线运动

速度:匀变速直线运动中速度和时间的关系:vt=v0+at

注:一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值;

(1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均;

(2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均;

位移:匀变速直线运动位移和时间的关系:s=v0t+1/2at2

注意:当物体作加速运动时a取正值,当物体作减速运动时a取负值;

推论:2as=vt2-v02

作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植:s2-s1=aT2

初速度为零的匀加速直线运动:前1秒,前2秒,……位移和时间的关系是:位移之比等于时间的平方比;第1秒、第2秒……的位移与时间的关系是:位移之比等于奇数比;

自由落体运动

只在重力作用下从高处静止下落的物体所作的运动。

位移公式:h=1/2gt2

速度公式:vt=gt

推论:2gh=vt2

牛顿定律

牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。

只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态;

力是该变物体速度的原因;

力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)

d力是产生加速度的原因;

惯性:物体保持匀速直线运动或静止状态的性质叫惯性。

一切物体都有惯性;

惯性的大小由物体的质量唯一决定;

惯性是描述物体运动状态改变难易的物理量;

牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。

数学表达式:a=F合/m;

加速度随力的产生而产生、变化而变化、消失而消失;

当物体所受力的方向和运动方向一致时,物体加速;当物体所受力的方向和运动方向相反时,物体减速。

力的单位牛顿的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1N;

牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的;

作用力和反作用力同时产生、同时变化、同时消失;

作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上;

曲线运动·万有引力

曲线运动

质点的运动轨迹是曲线的运动

曲线运动中速度的方向在时刻改变,质点在某一点(或某一时刻)的速度方向是曲线在这一点的切线方向

质点作曲线运动的条件:质点所受合外力的方向与其运动方向不在同一条直线上;且轨迹向其受力方向偏折;

曲线运动的特点

曲线运动一定是变速运动;

曲线运动的加速度(合外力)与其速度方向不在同一条直线上;

力的作用

力的方向与运动方向一致时,力改变速度的大小;

力的方向与运动方向垂直时,力改变速度的方向;

力的方向与速度方向既不垂直,又不平行时,力既搞变速度大小又改变速度的方向;

运动的合成与分解

判断和运动的方法:物体实际所作的运动是合运动

合运动与分运动的等时性:合运动与各分运动所用时间始终相等;

合位移和分位移,合速度和分速度,和加速度与分加速度均遵守平行四边形定则;

平抛运动

被水平抛出的物体在在重力作用下所作的运动叫平抛运动。

平抛运动的实质:物体在水平方向上作匀速直线运动,在竖直方向上作自由落体运动的合运动;

水平方向上的匀速直线运动和竖直方向上的自由落体运动具有等时性;

求解方法:分别研究水平方向和竖直方向上的二分运动,在用平行四边形定则求和运动;

匀速圆周运动

质点沿圆周运动,如果在任何相等的时间里通过的圆弧相等,这种运动就叫做匀速圆周运动。

线速度的大小等于弧长除以时间:v=s/t,线速度方向就是该点的切线方向;

角速度的大小等于质点转过的角度除以所用时间:ω=Φ/t

角速度、线速度、周期、频率间的关系:

(1)v=2πr/T;

(2) ω=2π/T;

(3)V=ωr;

(4)f=1/T;

向心力:

(1)定义:做匀速圆周运动的物体受到的沿半径指向圆心的力,这个力叫向心力。

(2)方向:总是指向圆心,与速度方向垂直。

(3)特点:①只改变速度方向,不改变速度大小

②是根据作用效果命名的。

(4)计算公式:F向=mv2/r=mω2r

向心加速度:a向= v2/r=ω2r

开普勒三定律

开普勒第一定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上;

说明:在中学间段,若无特殊说明,一般都把行星的运动轨迹认为是圆;

开普勒第三定律:所有行星与太阳的连线在相同的时间内扫过的面积相等;

开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等;

公式:R3/T2=K;

说明:

(1)R表示轨道的半长轴,T表示公转周期,K是常数,其大小之与太阳有关;

(2)当把行星的轨迹视为圆时,R表示愿的半径;

(3)该公式亦适用与其它天体,如绕地球运动的卫星;

万有引力定律

自然界中任何两个物体都是互相吸引的,引力的大小跟这两个物体的质量成正比,跟它们的距离的二次方成反比。

计算公式

F: 两个物体之间的引力

G: 万有引力常量

M1: 物体1的质量

M2: 物体2的质量

R: 两个物体之间的距离

依照国际单位制,F的单位为牛顿(N),m1和m2的单位为千克(kg),r的单位为米(m),常数G近似地等于

×10^-11 N·m^2/kg^2(牛顿平方米每二次方千克)。

解决天体运动问题的思路:

(1)应用万有引力等于向心力;应用匀速圆周运动的线速度、周期公式;

(2)应用在地球表面的物体万有引力等于重力;

(3)如果要求密度,则用:m=ρV,V=4πR3/3

机械能

功等于力和物体沿力的方向的位移的乘积;

计算公式:w=Fs;

推论:w=Fscosθ,θ为力和位移间的夹角;

功是标量,但有正、负之分,力和位移间的夹角为锐角时,力作正功,力与位移间的夹角是钝角时,力作负功;

功率

功率是表示物体做功快慢的物理量。

求平均功率:P=W/t;

求瞬时功率:p=Fv,当v是平均速度时,可求平均功率;

功、功率是标量;

功和能之间的关系

功是能的转换量度;做功的过程就是能量转换的过程,做了多少功,就有多少能发生了转化;

动能定理

合外力做的功等于物体动能的变化。

数学表达式:w合=mvt2/2-mv02/2

适用范围:既可求恒力的功亦可求变力的功;

应用动能定理解题的优点:只考虑物体的初、末态,不管其中间的运动过程;

应用动能定理解题的步骤:

(1)对物体进行正确的受力分析,求出合外力及其做的功;

(2)确定物体的初态和末态,表示出初、末态的动能;

(3)应用动能定理建立方程、求解

重力势能

物体的重力势能等于物体的重量和它的速度的乘积。

重力势能用EP来表示;

重力势能的数学表达式:EP=mgh;

重力势能是标量,其国际单位是焦耳;

重力势能具有相对性:其大小和所选参考系有关;

重力做功与重力势能间的关系

(1)物体被举高,重力做负功,重力势能增加;

(2)物体下落,重力做正功,重力势能减小;

(3)重力做的功只与物体初、末为置的高度有关,与物体运动的路径无关

机械能守恒定律

在只有重力(或弹簧弹力做功)的情形下,物体的动能和势能(重力势能、弹簧的弹性势能)发生相互转化,但机械能的总量保持不变。

机械能守恒定律的适用条件:只有重力或弹簧弹力做功。

机械能守恒定律的数学表达式:

在只有重力或弹簧弹力做功时,物体的机械能处处相等;

应用机械能守恒定律的解题思路

(1)确定研究对象,和研究过程;

(2)分析研究对象在研究过程中的受力,判断是否遵受机械能守恒定律;

(3)恰当选择参考平面,表示出初、末状态的机械能;

(4)应用机械能守恒定律,立方程、求解;

电场

产生电荷的方式

摩擦起电:

(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;

(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;

(3)实质:电子从一物体转移到另一物体;

接触起电:

(1)实质:电荷从一物体移到另一物体;

(2)两个完全相同的物体相互接触后电荷平分;

(3)电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;

感应起电:把电荷移近不带电的导体,可以使导体带电;

(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;

(2)实质:使导体的电荷从一部分移到另一部分;

(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;

电荷的基本性质:能吸引轻小物体;

电荷守恒定律

电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。

元电荷

一个电子所带的电荷叫元电荷,用e表示。

×10-19c;

一个质子所带电荷亦等于元电荷;

任何带电物体所带电荷都是元电荷的整数倍;

库仑定律

真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力。

计算公式:F=kQ1Q2/r2 (×)

库仑定律只适用于点电荷(电荷的体积可以忽略不计)

库仑力不是万有引力;

电场

电场是使点电荷之间产生静电力的一种物质。

只要有电荷存在,在电荷周围就一定存在电场;

电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;

电场、磁场、重力场都是一种物质

电场强度

放入电场中某点的电荷所受电场力F跟它的电荷量Q的比值叫该点的电场强度。

定义式:E=F/q;E是电场强度;F是电场力;q是试探电荷;

电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向(与负电荷所受电场力的方向相反)

该公式适用于一切电场:点电荷的电场强度公式:E=kQ/r2

电场的叠加

在空间若有几个点电荷同时存在,则空间某点的电场强度,为这几个点电荷在该点的电场强度的矢量和。

解题方法:分别作出表示这几个点电荷在该点场强的有向线段,用平行四边形定则求出合场强;

电场线

电场线是人们为了形象的描述电场特性而人为假设的线。

电场线不是客观存在的线;

电场线的形状:电场线起于正电荷终于负电荷;G:\用锯木屑观测电场线.DAT

(1)只有一个正电荷:电场线起于正电荷终于无穷远;

(2)只有一个负电荷:起于无穷远,终于负电荷;

(3)既有正电荷又有负电荷:起于正电荷终于负电荷;

电场线的作用:

(1)表示电场的强弱:电场线密则电场强(电场强度大);电场线疏则电场弱(电场强度小);

(2)表示电场强度的方向:电场线上某点的切线方向就是该点的场强方向;

(3)电场线的特点:

电场线不是封闭曲线;

同一电场中的电场线不相交;

匀强电场

电场强度的大小、方向处处相同的电场;匀强电场的电场线平行、且分布均匀。

匀强电场的电场线是一簇等间距的平行线;

平行板电容器间的电是匀强电场;

电势差

电荷在电场中由一点移到另一点时,电场力所作的功WAB与电荷量q的比值叫电势差,又名电压。

定义式:UAB=WAB/q;

电场力作的功与路径无关;

电势差又命电压,国际单位是伏特;

电场和功

电场中某点的电势,等于单位正电荷由该点移到参考点(零势点)时电场力作的功。

电势具有相对性,和零势面的选择有关;

电势是标量,单位是伏特V;

电势差和电势间的关系:UAB= φA -φB;

电势沿电场线的方向降低时,电场力要作功,则两点电势差不为零,就不是等势面;相同电荷在同一等势面的任意位置,电势能相同;

原因:电荷从一电移到另一点时,电场力不作功,所以电势能不变;

电场线总是由电势高的地方指向电势低的地方;

等势面的画法:相另等势面间的距离相等;

电场强度和电势差间的关系

在匀强电场中,沿场强方向的两点间的电势差等于场强与这两点的距离的乘积。

数学表达式:U=Ed;

该公式的使适用条件:仅仅适用于匀强电场;

:两等势面间的垂直距离;

电容器

储存电荷(电场能)的装置。

结构:由两个彼此绝缘的金属导体组成;

最常见的电容器:平行板电容器;

电容

电容器所带电荷量Q与两电容器量极板间电势差U的比值;用“C”来表示。

定义式:C=Q/U;

电容是表示电容器储存电荷本领强弱的物理量;

国际单位:法拉 简称:法,用F表示

电容器的电容是电容器的属性,与Q、U无关;

平行板电容器的决定式

平行板电容器的决定式:C=εs/4πkd;(其中d为两极板间的垂直距离,又称板间距;k是静电力常数,×;ε是电介质的介电常数,空气的介电常数最小;s表示两极板间的正对面积;)

电容器的两极板与电源相连时,两板间的电势差不变,等于电源的电压;

当电容器未与电路相连通时电容器两板所带电荷量不变;

带电粒子的加速

条件:带电粒子运动方向和场强方向垂直,忽略重力;

原理:动能定理:电场力做的功等于动能的变化:W=Uq=1/2mvt2-1/2mv02;

推论:当初速度为零时,Uq=1/2mvt2;

使带电粒子速度变大的电场又名加速电场;

恒定电流

电流

电荷的定向移动行成电流。

产生电流的条件:

(1)自由电荷;

(2)电场;

电流是标量,但有方向:我们规定:正电荷定向移动的方向是电流的方向;

注:在电源外部,电流从电源的正极流向负极;在电源的内部,电流从负极流向正极;

电流的大小:通过导体横截面的电荷量Q跟通过这些电量所用时间t的比值叫电流I表示;

(1)数学表达式:I=Q/t;

(2)电流的国际单位:安培A

(3)常用单位:毫安mA、微uA;

(4)1A=103mA=106uA

欧姆定律

导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比;

定义式:I=U/R;

推论:R=U/I;

电阻的国际单位是欧姆,用Ω表示; 1kΩ=103Ω,1MΩ=106Ω;

伏安特性曲线

闭合电路

由电源、导线、用电器、电键组成。

电动势:电源的电动势等于电源没接入电路时两极间的电压;用E表示;

外电路:电源外部的电路叫外电路;外电路的电阻叫外电阻;用R表示;其两端电压叫外电压;

内电路:电源内部的电路叫内电阻,内点路的电阻叫内电阻;用r表示;其两端电压叫内电压;如:发电机的线圈、干电池内的溶液是内电路,其电阻是内电阻;

电源的电动势等于内、外电压之和;

E=U内+U外;U外=RI;E=(R+r)I

闭合电路的欧姆定律

闭合电路里的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比;

数学表达式:I=E/(R+r)

当外电路断开时,外电阻无穷大,电源电动势等于路端电压;就是电源电动势的定义;

当外电阻为零(短路)时,因内阻很小,电流很大,会烧坏电路;

半导体

导电能力在导体和绝缘体之间;半导体的电阻随温升越高而减小;

导体

导体的电阻随温度的升高而升高,当温度降低到某一值时电阻消失,成为超导;

磁场

磁场

磁场的基本性质:磁场对方入其中的磁极、电流有磁场力的作用;

磁铁、电流都能能产生磁场;

磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用;

磁场的方向:磁场中小磁针北极的指向就是该点磁场的方向;

磁感线

在磁场中画一条有向的曲线,在这些曲线中每点切线方向就是该点的磁场方向。

磁感线是人们为了描述磁场而人为假设的线;

磁铁的磁感线,在外部从北极到南极,内部从南极到北极;

磁感线是封闭曲线;

安培定则

通电直导线的磁感线:用右手握住通电导线,让伸直的大拇指所指方向跟电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向;

环形电流的磁感线:让右手弯曲的四指和环形电流方向一致,伸直的大拇指所指的方向就是环形导线中心轴上磁感线的方向;

通电螺旋管的磁场:用右手握住螺旋管,让弯曲的四指方向和电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向;

地磁场

地球本身产生的磁场;从地磁北极(地理南极)到地磁南极(地理北极)。

磁感应强度

磁感应强度是描述磁场强弱的物理量。

磁感应强度的大小:在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积的比值,叫磁感应强度。B=F/IL

磁感应强度的方向就是该点磁场的方向(放在该点的小磁针北极的指向)

磁感应强度的国际单位:特斯拉 T,1T=1N/A。m

安培力

磁场对电流的作用力。

大小:在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力F等于磁感应强度B、电流I和导线长度L三者的乘积。

定义式:F=BIL(适用于匀强电场、导线很短时)

安培力的方向:左手定则:伸开左手,使大拇指根其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开四指指向电流的方向,那么大拇指所指的方向就是通电导线所受安培力的方向。

磁场和电流

磁铁和电流都可产生磁场;

磁场对电流有力的作用;

电流和电流之间亦有力的作用;

(1)同向电流产生引力;

(2)异向电流产生斥力;

分子电流假说:所有磁场都是由电流产生的;

磁性材料

能够被强烈磁化的物质叫磁性材料。

(1)软磁材料:磁化后容易去磁的材料;例:软铁;硅钢;应用:制造电磁铁、变压器。

(2)硬磁材料:磁化后不容易去磁的材料;例:碳钢、钨钢、制造:永久磁铁;

洛伦兹力

磁场对运动电荷的作用力,叫做洛伦兹力。

洛仑兹力的方向由左手定则判断:伸开左手让大拇指和其余四指共面且垂直,把左手放入磁场中,让磁感线垂直穿过手心,四指为正电荷运动方向(与负电荷运动方向相反)大拇指所指方向就是洛仑兹力的方向;

(1)洛仑兹力F一定和B、V决定的平面垂直。

(2)洛仑兹力只改变速度的方向而不改变其大小

(3)洛伦兹力永远不做功。

洛伦兹力的大小

(1)当v平行于B时:F=0

(2)当v垂直于B时:F=qvB

物理高中知识点归纳 第2篇

1审题

每次审题出了问题,老师都会指着我的鼻子说:“你那俩大眼睛长那干嘛使的!这都能看错!”当然,审题错误并不仅仅是看错个数,还包括审题不仔细、不准确,考虑不周到,缺乏认真、全面的审题能力,分析问题能力差,不按要求答题,不会通过分析题目中的有效信息抓出问题的关键,有些试题看似简单,但须认真审题,抓住题中的关键语句才容易得分。

举几个例子:

1、作图题,“要求画出使杠杆在水平位置平衡,一施加在杠杆上最小动力和力臂……”,部分考生只考虑前面的要求,没注意后面的条件“最小条件”而出现错误。

2、“……只有伏的电压对人体才是安全的”,一部分考生只答“36”而丢掉了“不高于”或“等于或低于”等的关键字。

3、“……坐在不同位置的观众都能看到银幕上的景物,这是光的现象”,一部分考生只答“反射”,而丢掉了“慢”这个关键字。

还有一部分同学,由于在平时学习过程中不注意养成良好的分析问题的习惯,拿到试题后,急于完成试题,导致对题目的隐含条件挖掘不完全,造成解题错误。比如说:填空题“将一木块放在容器底,向容器中倒入一些水,木块受到的浮力是N”。有40℅考生由于受平时一些题目的影响,认为只要是木块,在水中所受到的浮力必定与重力大小相等,这与学生做题注重数量忽视质量是很不开的。

2概念理解不到位

有些考生对物理概念的认识还比较模糊,理解肤浅,死记硬背,迁移能力差,答题时凭着感觉回答,造成失分。

例如某一填空题的第一空标准答案是“电能(度)表”,但有不少考生却回答成了“测电表、电流表、电压表、计电表、电量表”等。

如某题是考核功率概念,很多学生由于对功率的物理意义没有真正理解,在比较不同功率的机器,都在正常工作状态下的做功情况时,出现了错误。选择“功率大的机器做功多”的选项的考生较多。

学生的这些错误反映出一些老师在物理概念教学中,不大注重知识的形成过程,不大重视为了使学生更好地理解概念的物理意义,而应设置一系列的支撑点,这些老师采用简单的下定义的方法进行教学,使学生处在机械记忆的学习状态中,其教学效果低下。

从考试统计结果来看,有些学生由于对一些概念、规律理解不深刻,导致不能正确解决问题。如:一道填空题要求学生回答火箭升空过程中,燃料的化学能转化为内能和什么能。本题预测难度是,考试后统计结果其实际难度为。有不少考生答成是动能,还有的考生答成是势能,只有44℅的考生答出是机械能。说明考生对此问题并不是完全不懂,只不过是理解不够深刻。

3实验能力差

学生对物理实验的基本过程认识模糊,综合实验能力差,实验设计能力不强。

如实验题要求学生写出用伏安法测电阻的实验原理,标准答案是“欧姆定律”。而很多学生居然写成了“电流与电压成正比、伏安法测电阻、控制变量法、改变电压和电流的比值等”。这么简单的题目,有这么多的答案,都出乎老师的意料。反映出物理实验教学还存在漏洞,没有把实验教学的重点放在实验的过程上。

近几年来,在实验题中常常采用新题型考查学生运用知识和技能解决新问题的能力。如根据提供的器材,选取合适的实验器材,设计一种测蜡块密度的方法。要求学生在同类实验方法的基础上,再根据蜡块不沉入水中的特点,选择合适的器材,设计合理的实验步骤。通过阅卷发现以下几个问题:①没选实验器材;②器材选多了;③试题中没给的器材选上了(如天平);④语言组织能力差,逻辑混乱;⑤没有考虑蜡块不能沉入水中特点。

4数学不过关

数理结合意识差,不会用数学知识处理物理问题;简单运算失误太多,得分率就相对较低。解答计算题时,常见公式不知道,不会变形公式,不会换算单位,各物理量张冠李戴。这反映出一些学生的数学基础差,基本计算不过关。

5弱成渣的识图能力

学生的识图能力不强,过失性失分严重。

如学生运动与力中的s—t图像、v—t图像中的点、线的物理意义不明确,导致错答题目。

如在作图题中有相当部分学生在所画的重力上不标明符号“G”。

又如“根据电流方向,标出电源的正、负极和通电螺线管及小磁针的N、S极”。这道题可谓是“千锤百炼”,然而问题还是层出不穷:误把螺线管的N、S极认为是小磁针的N、S极,漏标螺线管的N、S极,漏标电源的+、-极,错标电源的+、-极,在电源上标N、S极。这说明有一部分学生的右手螺旋定则没有真正掌握,有一部分学生审题不仔细,非智力因素差。

6知识面过窄

学生生活经历不丰富,视野不开阔,知识面狭窄。

如开放性试题要求“写出除爱因斯坦以外的另一位科学家及其在物理学中的主要贡献”,有的学生在写科学家的名字时居然写成了“马德堡”,还有的同学将科学家与他的主要贡献没有对应起来,如“物理学家”填“奥斯特”,“主要贡献”填成了“地磁场”;又如“物理学家”填“托里拆利”,“主要贡献”填成了“大气压的存在”等。

这说明了部分学生对重要的物理规律的来龙去脉了解得不够彻底。

7综合分析能力弱

学生的综合分析能力较弱。对于综合性题,很多学生都感到缺少解题的思路,心里感到害怕,往往是忙乱中出错。

如某动态电路分析题,这是一道考核学生电路动态分析能力和获得信息能力的综合题,要经过对图表的综合分析才能得出结论。虽然教师在这方面工夫下了不少,但反映出来的问题还是比较多。该题的标准答案应该是电流表的读数随着电阻的变小而“变大”,但有的同学却填成了“变小、不变”;电压表应并联在a、b两点间,却填成了“b、c或a、c”两点间,这就说明了学生对串联电路的规律理解还不够深刻,有的同学甚至是瞎猜,老师的训练还没有转化为学生的能力。

8答题不规范

中考中常出现考试与自己所估算的分数偏差较大的情况,究其原因:

一是考生在解答的过程中语言表达不流畅、不合理、不科学、不规范,解题步骤混乱所造成的。如解答实验题不规范——不遵守测量工具的操作规则。如观察测量工具的数据不正确,连线电流表、电压表的接线柱出错;

二是作图不规范。如随手画图,作用点的位置画错,方向标反,虚线与实线混淆;

三是书写不规范、字迹潦草,书写不清楚,字母的大小写混淆,涂改严重;四是计算题的解答不规范。如未写出物理计算公式,只写出计算数据,计算结果不正确,代入公式中数字顺序不正确,单位没有统一单位,书写单位不规范等。

9发挥失常

身心过度疲劳,心里压力过大,在考场上答题时怯场,过度紧张,心理素质差,导致答题发挥失常。

物理高中知识点归纳 第3篇

线速度的大小等于弧长除以时间:v=s/t,线速度方向就是该点的切线方向;

角速度的大小等于质点转过的角度除以所用时间:ω=Φ/t

角速度、线速度、周期、频率间的关系:

(1)v=2πr/T;

(2) ω=2π/T;

(3)V=ωr;

(4)f=1/T;

向心力:

(1)定义:做匀速圆周运动的物体受到的沿半径指向圆心的力,这个力叫向心力。

(2)方向:总是指向圆心,与速度方向垂直。

(3)特点:①只改变速度方向,不改变速度大小

②是根据作用效果命名的。

(4)计算公式:F向=mv2/r=mω2r

向心加速度:a向= v2/r=ω2r

物理高中知识点归纳 第4篇

1、力的国际单位是牛顿,用N表示;

2、力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点;

3、力的示意图:用一个带箭头的线段表示力的方向;

4、力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;

(1)重力:由于地球对物体的吸引而使物体受到的力;

(A)重力不是万有引力而是万有引力的一个分力;

(B)重力的方向总是竖直向下的(垂直于水平面向下)

(C)测量重力的仪器是弹簧秤;

(D)重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心;

(2)弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力;

(A)产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力;

(B)弹力包括:支持力、压力、推力、拉力等等;

(C)支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向;

(D)在弹性限度内弹力跟形变量成正比;F=Kx

(3)摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力;

(A)产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力;

(B)摩擦力的方向和物体相对运动(或相对运动趋势)方向相反;

(C)滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力;

(D)静摩擦力的大小等于使物体发生相对运动趋势的外力;

(4)合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力;

(A)合力与分力的作用效果相同;

(B)合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力;

(C)合力大于或等于二分力之差,小于或等于二分力之和;

(D)分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法);

物理高中知识点归纳 第5篇

电磁感应[感应电动势的大小计算公式]

1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}

2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}

3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}

4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}

磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}

感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}

注:

(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;

(2)自感电流总是阻碍引起自感电动势的电流的变化;

(3)单位换算:1H=103mH=106μH;

(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。

物理高中知识点归纳 第6篇

动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}

冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}

动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}

动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′

弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}

非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}

完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}

物体m1以v1初速度与静止的物体m2发生弹性正碰:

v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)

由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)

子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失

E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}

物理高中知识点归纳 第7篇

磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位:(T),1T=1N/A?m

安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0

(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下:(a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

物理高中知识点归纳 第8篇

电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}

闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外

{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R

电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)

电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+

电流关系 I总=I1=I2=I3 I并=I1+I2+I3+

电压关系 U总=U1+U2+U3+ U总=U1=U2=U3

功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+

欧姆表测电阻

(1)电路组成

(2)测量原理

两表笔短接后,调节Ro使电表指针满偏,得

Ig=E/(r+Rg+Ro)

接入被测电阻Rx后通过电表的电流为

Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)

由于Ix与Rx对应,因此可指示被测电阻大小

(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

伏安法测电阻

电流表内接法:
电流表外接法:

电压表示数:U=UR+UA 电流表示数:I=IR+IV

Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)

选用电路条件Rx>>RA [或Rx>(RARV)1/2] 选用电路条件Rx<

滑动变阻器在电路中的限流接法与分压接法

电压调节范围小,电路简单,功耗小 电压调节范围大,电路复杂,功耗较大

便于调节电压的选择条件Rp>Rx 便于调节电压的选择条件Rp

物理高中知识点归纳 第9篇

功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}

重力做功:Wab=mghab {m:物体的质量,≈10m/s2,hab:a与b高度差(hab=ha-hb)}

电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}

电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}

功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}

汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}

汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)

电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}

焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}

纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}

重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}

电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}

动能定理(对物体做正功,物体的动能增加):

W合=mvt2/2-mvo2/2或W合=ΔEK

{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}

机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP

物理高中知识点归纳 第10篇

运动学的基本概念1、参考系:描述一个物体的运动时,选来作为标准的的另外的物体。

运动是绝对的,静止是相对的。一个物体是运动的还是静止的,都是相对于参考系在而言的。

参考系的选择是任意的,被选为参考系的物体,我们假定它是静止的。选择不同的物体作为参考系,可能得出不同的结论,但选择时要使运动的描述尽量的简单。

通常以地面为参考系。

2、质点:

①定义:用来代替物体的有质量的点。质点是一种理想化的模型,是科学的抽象。

②物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。且物体能否看成质点,要具体问题具体分析。

③物体可被看做质点的几种情况:

(1)平动的物体通常可视为质点.

(2)有转动但相对平动而言可以忽略时,也可以把物体视为质点.

(3)同一物体,有时可看成质点,有时不能.当物体本身的大小对所研究问题的影响不能忽略时,不能把物体看做质点,反之,则可以.

注(1)不能以物体的大小和形状为标准来判断物体是否可以看做质点,关键要看所研究问题的性质.当物体的大小和形状对所研究的问题的影响可以忽略不计时,物体可视为质点.

(2)质点并不是质量很小的点,要区别于几何学中的“点”.

3、时间和时刻:

时刻是指某一瞬间,用时间轴上的一个点来表示,它与状态量相对应;时间是指起始时刻到终止时刻之间的间隔,用时间轴上的一段线段来表示,它与过程量相对应。

4、位移和路程:

位移用来描述质点位置的变化,是质点的由初位置指向末位置的有向线段,是矢量;

路程是质点运动轨迹的长度,是标量。

5、速度:

用来描述质点运动快慢和方向的物理量,是矢量。

(1)平均速度:是位移与通过这段位移所用时间的比值,其定义式为 ,方向与位移的方向相同。平均速度对变速运动只能作粗略的描述。

(2)瞬时速度:是质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,它可以精确变速运动。瞬时速度的大小简称速率,它是一个标量。

6、加速度:用量描述速度变化快慢的的物理量。

加速度是矢量,其方向与速度的变化量方向相同(注意与速度的方向没有关系),大小由两个因素决定。

易错现象

1、忽略位移、速度、加速度的矢量性,只考虑大小,不注意方向。

2、混淆速度、速度的增量和加速度之间的关系。

高中物理知识点总结归纳相关

物理高中知识点归纳 第11篇

牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}

超重:FN>G,失重:FN

牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕

注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

物理高中知识点归纳 第12篇

1、参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止);

2、质点:只考虑物体的质量、不考虑其大小、形状的物体;

(1)质点是一理想化模型;

(2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时;

如:研究地球绕太阳运动,火车从北京到上海;

3、时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段;

如:5点正、9点、7点30是时刻,45分钟、3小时是时间间隔;

4、位移:从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:描述质点运动轨迹的曲线;

(1)位移为零、路程不一定为零;路程为零,位移一定为零;

(2)只有当质点作单向直线运动时,质点的位移才等于路程;

(3)位移的国际单位是米,用m表示

5、位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移;

(1)匀速直线运动的位移图像是一条与横轴平行的直线;

(2)匀变速直线运动的位移图像是一条倾斜直线;

(3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大;

6、速度是表示质点运动快慢的物理量;

(1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度;

(2)速率只表示速度的大小,是标量;

7、加速度:是描述物体速度变化快慢的物理量;

(1)加速度的定义式:a=vt-v0/t

(2)加速度的大小与物体速度大小无关;

(3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零;

(4)速度改变等于末速减初速。加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关;

(5)加速度是矢量,加速度的方向和速度变化方向相同;

(6)加速度的国际单位是m/s2

物理高中知识点归纳 第13篇

大的物体不一定不能看成质点,小的物体不一定能看成质点。

平动的物体不一定能看成质点,转动的物体不一定不能看成质点。

参考系不一定是不动的,只是假定为不动的物体。

选择不同的参考系物体运动情况可能不同,但也可能相同。

在时间轴上n秒时指的是n秒末。第n秒指的是一段时间,是第n个1秒。第n秒末和第n+1秒初是同一时刻。

忽视位移的矢量性,只强调大小而忽视方向。

物体做直线运动时,位移的大小不一定等于路程。

位移也具有相对性,必须选一个参考系,选不同的参考系时,物体的位移可能不同。

打点计时器在纸带上应打出轻重合适的小圆点,如遇到打出的是短横线,应调整一下振针距复写纸的高度,使之增大一点。

使用计时器打点时,应先接通电源,待打点计时器稳定后,再释放纸带。

释放物体前,应使物体停在靠近打点计时器的位置。

使用电火花打点计时器时,应注意把两条白纸带正确穿好,墨粉纸盘夹在两纸带间;使用电磁打点计时器时,应让纸带通过限位孔,压在复写纸下面。

“速度”一词是比较含糊的统称,在不同的语境中含义不同,一般指瞬时速率、平均速度、瞬时速度、平均速率四个概念中的一个,要学会根据上、下文辨明“速度”的含义。平常所说的“速度”多指瞬时速度,列式计算时常用的是平均速度和平均速率。

着重理解速度的矢量性。有的同学受初中所理解的速度概念的影响,很难接受速度的方向,其实速度的方向就是物体运动的方向,而初中所学的“速度”就是现在所学的平均速率。

平均速度不是速度的平均。

平均速率不是平均速度的大小。

物体的速度大,其加速度不一定大。

物体的速度为零时,其加速度不一定为零。

物体的速度变化大,其加速度不一定大。

加速度的正、负仅表示方向,不表示大小。

物体的加速度为负值,物体不一定做减速运动。

物体的加速度减小时,速度可能增大;加速度增大时,速度可能减小。

物体的速度大小不变时,加速度不一定为零。

物体的加速度方向不一定与速度方向相同,也不一定在同一直线上。

判断超重、失重时不是看速度方向如何,而是看加速度方向向上还是向下。

有时加速度方向不在竖直方向上,但只要在竖直方向上有分量,物体也处于超、失重状态。

两个相关联的物体,其中一个处于超(失)重状态,整体对支持面的压力也会比重力大(小)。

国际单位制是单位制的一种,不要把单位制理解成国际单位制。

力的单位牛顿不是基本单位而是导出单位。

有些单位是常用单位而不是国际单位制单位,如:小时、斤等。


物理高中知识点归纳 第14篇

1、电场

两种电荷、电荷守恒定律、元电荷:(×10-19C);带电体电荷量等于元电荷的整数倍。

库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}。

2、磁场

磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m2m。

安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}。

3、交变电流(正弦式交变电流)

电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)。

电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总。

物理高中知识点归纳 第15篇

匀变速直线运动的规律及其应用:

1、定义:在任意相等的时间内速度的变化都相等的直线运动

2、匀变速直线运动的基本规律

(1)任意两个连续相等的时间T内的位移之差为恒量

(2)某段时间内时间中点瞬时速度等于这段时间内的平均速度

4、初速度为零的匀加速直线运动的比例式(2)初速度为零的匀变速直线运动中的几个重要结论

①1T末,2T末,3T末……瞬时速度之比为:

v1∶v2∶v3∶……∶vn=1∶2∶3∶……∶n

②1T内,2T内,3T内……位移之比为:

x1∶x2∶x3∶……∶xn=1∶3∶5∶……∶(2n-1)

③第一个T内,第二个T内,第三个T内……第n个T内的位移之比为:

xⅠ∶xⅡ∶xⅢ∶……∶xN=1∶4∶9∶……∶n2

④通过连续相等的位移所用时间之比为:

易错现象:

1、在一系列的公式中,不注意的v、a正、负。

2、纸带的处理,是这部分的重点和难点,也是易错问题。

3、滥用初速度为零的匀加速直线运动的特殊公式。

物理高中知识点归纳 第16篇

运动学的基本概念1、参考系:描述一个物体的运动时,选来作为标准的的另外的物体。

运动是绝对的,静止是相对的。一个物体是运动的还是静止的,都是相对于参考系在而言的。

参考系的选择是任意的,被选为参考系的物体,我们假定它是静止的。选择不同的物体作为参考系,可能得出不同的结论,但选择时要使运动的描述尽量的简单。

通常以地面为参考系。

2、质点:

①定义:用来代替物体的有质量的点。质点是一种理想化的模型,是科学的抽象。

②物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。且物体能否看成质点,要具体问题具体分析。

③物体可被看做质点的几种情况:

(1)平动的物体通常可视为质点.

(2)有转动但相对平动而言可以忽略时,也可以把物体视为质点.

(3)同一物体,有时可看成质点,有时不能.当物体本身的大小对所研究问题的影响不能忽略时,不能把物体看做质点,反之,则可以.

注(1)不能以物体的大小和形状为标准来判断物体是否可以看做质点,关键要看所研究问题的性质.当物体的大小和形状对所研究的问题的影响可以忽略不计时,物体可视为质点.

(2)质点并不是质量很小的点,要区别于几何学中的“点”.

3、时间和时刻:

时刻是指某一瞬间,用时间轴上的一个点来表示,它与状态量相对应;时间是指起始时刻到终止时刻之间的间隔,用时间轴上的一段线段来表示,它与过程量相对应。

4、位移和路程:

位移用来描述质点位置的变化,是质点的由初位置指向末位置的有向线段,是矢量;

路程是质点运动轨迹的长度,是标量。

5、速度:

用来描述质点运动快慢和方向的物理量,是矢量。

(1)平均速度:是位移与通过这段位移所用时间的比值,其定义式为 ,方向与位移的方向相同。平均速度对变速运动只能作粗略的描述。

(2)瞬时速度:是质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,它可以精确变速运动。瞬时速度的大小简称速率,它是一个标量。

6、加速度:用量描述速度变化快慢的的物理量。

加速度是矢量,其方向与速度的变化量方向相同(注意与速度的方向没有关系),大小由两个因素决定。

易错现象

1、忽略位移、速度、加速度的矢量性,只考虑大小,不注意方向。

2、混淆速度、速度的增量和加速度之间的关系。

物理高中知识点归纳 第17篇

质点的运动(1)------直线运动

1)匀变速直线运动

平均速度V平=s/t(定义式) 有用推论Vt2-Vo2=2as

中间时刻速度Vt/2=V平=(Vt+Vo)/2 末速度Vt=Vo+at

中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 位移s=V平t=Vot+at2/2=Vt/2t

加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:。

注:

(1)平均速度是矢量;

(2)物体速度大,加速度不一定大;

(3)a=(Vt-Vo)/t只是量度式,不是决定式;

(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

2)自由落体运动

初速度Vo=0

末速度Vt=gt

下落高度h=gt2/2(从Vo位置向下计算)

推论Vt2=2gh

注:

(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

(2)≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动

位移s=Vot-gt2/2 末速度Vt=Vo-gt (≈10m/s2)

有用推论Vt2-Vo2=-2gs 上升最大高度Hm=Vo2/2g(抛出点算起)

往返时间t=2Vo/g (从抛出落回原位置的时间)

注:

(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

(3)上升与下落过程具有对称性,如在同点速度等值反向等。

质点的运动(2)----曲线运动、万有引力

1)平抛运动

水平方向速度:Vx=Vo 竖直方向速度:Vy=gt

水平方向位移:x=Vot 竖直方向位移:y=gt2/2

运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

合位移:s=(x2+y2)1/2,

位移方向与水平夹角α:tgα=y/x=gt/2Vo

水平方向加速度:ax=0;竖直方向加速度:ay=g

注:

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)决定与水平抛出速度无关;

(3)θ与β的关系为tgβ=2tgα;

(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2)匀速圆周运动

线速度V=s/t=2πr/T 角速度ω=Φ/t=2π/T=2πf

向心加速度a=V2/r=ω2r=(2π/T)2r 向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

周期与频率:T=1/f 角速度与线速度的关系:V=ωr

角速度与转速的关系ω=2πn(此处频率与转速意义相同)

主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。本文来自高三网[]。

3)万有引力

开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

万有引力定律:F=Gm1m2/r2 (×10-11N?m2/kg2,方向在它们的连线上)

天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地);;

地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

注:

(1)天体运动所需的向心力由万有引力提供,F向=F万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的最大环绕速度和最小发射速度均为。

物理高中知识点归纳 第18篇

平均速度V平=s/t(定义式)

有用推论Vt2-Vo2=2as

中间时刻速度Vt/2=V平=(Vt+Vo)/2

末速度Vt=Vo+at

中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2

位移s=V平t=Vot+at2/2=Vt/2t

加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:。

注:

(1)平均速度是矢量;

(2)物体速度大,加速度不一定大;

(3)a=(Vt-Vo)/t只是量度式,不是决定式;

(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

物理高中知识点归纳 第19篇

1、速度:匀变速直线运动中速度和时间的关系:vt=v0+at

注:一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值;

(1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均;

(2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均;

2、位移:匀变速直线运动位移和时间的关系:s=v0t+1/2at

注意:当物体作加速运动时a取正值,当物体作减速运动时a取负值;

3、推论:2as=vt2-v02

4、作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植;s2-s1=aT2

5、初速度为零的匀加速直线运动:前1秒,前2秒,„„位移和时间的关系是:位移之比等于时间的平方比;第1秒、第2秒„„的位移与时间的关系是:位移之比等于奇数比。

三、自由落体运动:只在重力作用下从高处静止下落的物体所作的运动;

1、位移公式:h=1/2gt2

2、速度公式:vt=gt

3、推论:2gh=vt2

物理高中知识点归纳 第20篇

质点的运动(2)----曲线运动、万有引力1)平抛运动

水平方向速度:Vx=Vo 竖直方向速度:Vy=gt

水平方向位移:x=Vot 竖直方向位移:y=gt2/2

运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

合位移:s=(x2+y2)1/2,

位移方向与水平夹角α:tgα=y/x=gt/2Vo

水平方向加速度:ax=0;竖直方向加速度:ay=g

注:

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)决定与水平抛出速度无关;

(3)θ与β的关系为tgβ=2tgα;

(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2)匀速圆周运动

线速度V=s/t=2πr/T 角速度ω=Φ/t=2π/T=2πf

向心加速度a=V2/r=ω2r=(2π/T)2r 向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

周期与频率:T=1/f 角速度与线速度的关系:V=ωr

角速度与转速的关系ω=2πn(此处频率与转速意义相同)

主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。本文来自高三网[]。

3)万有引力

开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

万有引力定律:F=Gm1m2/r2 (×10-11N?m2/kg2,方向在它们的连线上)

天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地);;

地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

注:

(1)天体运动所需的向心力由万有引力提供,F向=F万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的最大环绕速度和最小发射速度均为。


物理高中知识点归纳 第21篇

电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)

电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总

正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2

理想变压器原副线圈中的电压与电流及功率关系

U1/U2=n1/n2; I1/I2=n2/n2; P入=P出

在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失:P损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;

公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);

S:线圈的面积(m2);U:(输出)电压(V);I:电流强度(A);P:功率(W)。

注:

(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;

(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;

(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;

(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;

(5)其它相关内容:正弦交流电图象〔见第二册P190〕/电阻、电感和电容对交变电流的作用〔见第二册P193〕。

物理高中知识点归纳 第22篇

本影和半影

(l)影:影是自光源发出并与投影物体表面相切的光线在背光面的后方围成的区域.

(2)本影:发光面较小的光源在投影物体后形成的光线完全不能到达的区域.

(3)半影:发光面较大的光源在投影物体后形成的只有部分光线照射的区域.

(4)日食和月食:人位于月球的本影内能看到日全食,位于月球的半影内能看到日偏食,位于月球本影的延伸区域(即“伪本影”)能看到日环食.当地球的本影部分或全部将月球反光面遮住,便分别能看到月偏食和月全食.

用眼睛看实际物体和像

用眼睛看物或像的本质是凸透镜成像原理:角膜、水样液、晶状体和玻璃体共同作用的结果相当于一只 凸透镜。发散光束或平行光束经这只凸透镜作用后,在视网膜上会聚于一点,引起感光细胞的感觉,通过视神经传给大脑,产生视觉。

物理知识点三、光的反射

反射现象:光从一种介质射到另一种介质的界面上再返回原介质的现象.

反射定律:反射光线跟入射光线和法线在同一平面内,且反射光线和人射光线分居法线两侧,反射角等于入射角.

分类:光滑平面上的反射现象叫做镜面反射。发生在粗糙平面上的反射现象叫做漫反射。镜面反射和漫反射都遵循反射定律.

光路可逆原理:所有几何光学中的光现象,光路都是可逆的.

物理知识点四.平面镜的作用和成像特点

(1)作用:只改变光束的传播方向,不改变光束的聚散性质.

(2)成像特点:等大正立的虚像,物和像关于镜面对称.

(3)像与物方位关系:上下不颠倒,左右要交换

物理高中知识点归纳 第23篇

【实验目的】

1、理解用插针法测定玻璃折射率的原理

2、学会测量玻璃的折射率的实验方法

【实验原理】用插针法确定光路,找到跟入射光线相对应的折射光线,用量角器测出入射角和折射角,根据折射定律,计算出玻璃的折射率。

【实验仪器和器材】

玻璃砖,直尺,大头针(四枚),量角器,图板(四枚),图钉,白纸,铅笔,木板。

【实验步骤】

1、把白纸用图钉钉在木板上

2、在白纸上画一条直线aa,作为界面,画一条直线AO作为入射光线,并过O点画出界面aa,的法线NN,

3、将长方形的玻璃砖放在白纸上,使一边与aa,对齐,并画出玻璃砖的另一边。

4、在AO直线上竖直插上两枚大头针P1,P2

5、在玻璃砖另侧竖直插上大头针P3,使得其能挡住P1和P2的像

6、同时在该侧竖直大头针P4,使其能挡住P1,P2,P3的像

7、记下P3,P4的位置,移去玻璃砖和大头针,过P3、P4作直线O,B与bb,交于O,则OO为玻璃砖的折射光线,入射角为,折射角为

8、用量角器量出入射角和折射角的角度

9、用三角函数求出入射角和折射角的正弦值,记录在自己设计的表格中

10、用上面的方法分别求出入射角为30、45、60度的折射角,

11、计算不同入射角时的折射率,看它们是否接近一个常数,求出几次试验中的平均值,即为玻璃砖的折射率。

【注意事项】

1、玻璃要厚,只能接触玻璃的毛面和棱,严禁用玻璃当尺子用

2、入射角应在30度到60度之间

3、要竖直插到白纸上,且玻璃砖每一侧两枚大头针的距离应该大一些,以减少确定光路方向时造成的误差

4、玻璃砖的折射面要画准

5、由于要多次改变入射角重复实验,

【误差分析】

主要来源:

1、确定入射光线、出射光线时的误差,两枚大头针的距离宜大点。

2、测量入射角与折射角的误差。不宜过大和过小

推荐访问:知识点 归纳 集锦 物理高中知识点归纳集锦23篇 物理高中知识点归纳(集锦23篇) 物理高中知识点大全